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ABSTRACT: Let A be an n n positive de nite Hermitian matrix with all eigenvalues between 1 and 2. We 

represent the permanent of A as the integral of some explicit log-concave function on R
2n

. Consequently, there is 

a fully polynomial randomized approximation scheme (FPRAS) for per A. 
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INTRODUCTION AND MAIN RESULTS 
Let A = (aij) be an n ,n complex matrix. The permanent of A is de ned as 

 

 n 

 X Y 

per A = 
a
k (k)

; 

 2Sn k=1 

 

where Sn is the symmetric group of all n! permutations of the set f1; : : : ; ng. Re-cently, in particular 

because of connections with quantum optics, there was some interest in e cient computing (approximating) per 

A, when A is a positive semi-de nite Hermitian matrix, see [A+17], [GS18] and references therein. As is known, 

in that case per A is real and non-negative, see, for example, Chapter 2 of [Mi78]. In [A+17], Anari, Gurvits, 

Oveis Gharan and Saberi constructed a deterministic polynomial time algorithm approximating the permanent of 

a positive semide nite n n Hermitian matrix A within a multiplicative factor of c
n
 for c = e

1+
 4:84, where 0:577 is 

the Euler constant. Similarly to the case of a non-negative real matrix A, the problem of exact computation of 

per A for a positive semide nite matrix A is #P-hard [GS18]. 

 

If A is a non-negative real matrix, a fully polynomial randomized approximation scheme (FPRAS) for 

per A was constructed by Jerrum, Sinclair and Vigoda [J+04]. Given an n n matrix non-negative A and a real 0 

<< 1, the algorithm of [J+04] 
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 time a 

number approximating per A within relative error . The algorithm is randomized, meaning that the number satis 

es the desired condition with a su ciently large probability p, for example, with p = 0:9 (then by running m 

independent copies of the algorithm and taking the median of the computed s, one can make the probability of 

error exponentially small in m). No such algorithm is known in the case of a positive semide nite Hermitian A, 

and the question of existence of an FPRAS in that case was asked in [A+17] and [GS18]. 

 

In this note, we show that that there is a fully polynomial randomized approx-imation scheme (FPRAS) 

for permanents of positive de nite matrices with the eigenvalues between 1 and 2. Namely, we represent per A 

for such an n n matrix A as the integral of an explicitly constructed log-concave function fA : R
2n

 ! R+, so that 

Z 

fA(t) dt = per A: 

R2n 

 

There is an FPRAS for integrating log-concave functions, see [LV07] for the detailed analysis and 

history of the Markov Chain Monte Carlo approach to the problem of integrating log-concave functions and a 

closely related problem of approximat-ing volumes of convex bodies. Hence the above integral representation 
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and an integration algorithm from [LV07] instantly produce an FPRAS for computing the permanent of a 

positive de nite Hermitian matrix with all eigenvalues between 1 and 2. We note that a standard interpolation 

argument implies that the problem of computing per A exactly remains #P-hard, when restricted to positive de 

nite matrices with eigenvalues between 1 and 2. Indeed, the set Xn of such n n ma-trices has a non-empty 

interior in the vector space of all n n Hermitian matrices. Given an arbitrary n n Hermitian matrix B, one can 

draw a line L through B and an interior point of Xn. Since the restriction of the permanent onto that line is a 

univariate polynomial of degree at most n, by computing the permanent per Ai for n + 1 distinct matrices Ai 2 (L 

\ Xn), we would be able to compute per B exactly by interpolation, which is a #P-hard problem, cf. [GS18]. 

We consider the space C
n
 with the standard norm 

 

kzk
2
 = jz1j

2
 + : : : + jznj

2
; where z = (z1; : : : ; zn) : 

 

We identify C
n
 = R

2n
 by identifying z = x + iy with (x; y). For a complex matrix 

 

L = (ljk), we denote by L = ljk its conjugate, so that ljk = lkj for all j; k: 

 

 

We prove the following main result. 

(1.1) Theorem. Let A be an n  n positive de nite matrix with all eigenvalues between 1 and 2. Let us write A = I 

+ B, where I is the n  n identity matrix and B is an n   n positive semide nite Hermitian matrix with eigenvalues 

between 0 2 and 1. Further, we write B = LL , where L = (ljk) is an n n complex matrix. We de ne linear 

functions ‘1; : : : ; ‘n : C
n
 ! C by 

n 

X 

‘j(z) = ljkzk for z = (z1; : : : ; zn) : 

 

k=1 

 

Let us de ne fA : C
n
 ! R+ by 

fA(z) =  
1

n e 

n 

1 + j‘j(z)j
2 

: zk
2

j=1 

   Y   

 

 

(1) Identifying C
n
 = R

2n
, we have 

Z 

per A = fA(x; y) dxdy: 

R2n 

 

 

(2) The function fA : R
2n

 ! R
2n

 and if 

 

x = x1 + (1 )x2 and 

 

then 

fA (x; y) 

 

R+ is log-concave, that is, if (x1; y1); (x2; y2) 2 

 

y = y1 + (1 )y2 for some 0 1 

 

fA(x1; y1)fA
1
   (x2; y2): 

 

2. Proofs 
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We start with a known integral representation of the permanent of a positive semide nite matrix. 

 

(2.1) The integral formula. Let be the Gaussian probability measure in C
n
 with density 

 
1
n e 

zk2
 where kzk

2
 = jz1j

2
 + : : : + jznj

2
   for  z = (z1; : : : ; zn) : 

 

 

For the expectations of products of coordinates, we have 

  Z 1 if i = j 

E zi 

 

= zi 

 

d (z) = 

 

zj zj 

if i 6= j:   C
n 

0 

Let ‘1; : : : ; ‘n : C
n
 ! C be linear functions and let B = (bjk) be the n  n matrix, 

Z 

 

bjk = E ‘j‘k = ‘j(z)‘k(z) d (z) for j; k = 1; : : : ; n: 

C
n 

 

Hence B is a positive semide nite Hermitian matrix and the Wick formula (see, for example, Section 3.1.4 of 

[Ba16]) implies that 

 

Z 

(2.1.1) per B = E  j‘1j
2
 j‘nj

2
  = j‘1(z)j

2
 j‘n(z)j

2
 d (z): 

C
n 

 

Next, we need a simple lemma. 

 

(2.2) Lemma. Let q : R
m
 ! R+ be a positive semide nite quadratic form. Then the function 

 

h(x) = ln 1 + q(x) q(x) 

 

is concave. 

 

Proof. It su ces to check that the restriction of h onto any a ne line x( ) = a+ b with a; b 2 R
m
 is concave. Thus we 

need to check that the univariate function 

G( ) = ln 1 + ( + )
2
 +  

2
 ( + )

2
 

2
 for 2 R; 

 

where 6= 0, is concave, for which it su ces to check that G
00

( ) 0 for all . Via the a ne substitution := ( )= , it su 

ces to check that g
00

( ) 0, where 

We have 

 g( ) = ln 1 +  
2
 +  

2 
2+2: 

   

2 

 

  

g
0
( ) = 2 

 

 

  

 1+
2
+

2 

and       

g00 

2(1+ 
2
+ 

2
) 4 

2 
   

( ) = 

   

2 

 

    

 (1+ 
2
+ 

2
)

2 

21+2+2
2 

 2(1+ 
2
+ 

2
) 4 

2 

= 

       

  (1+ 
2
+ 

2
)

2 
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2+2
2
+2

2
  4

2
  2 2

4
  2

4
  4

2
  4

2
  4

22 
 

= 

       

  

(1+ 
2
+ 

2
)

2 

  

     

6 
2 

+2 
2
+2 

4
+2 

4
+4 

2 2 
 

0 

  

= 

      

  (1+ 
2
+ 

2
)

2 
   

and the proof follows.    

(2.3) Proof of Theorem 1.1. We have    

   J  f
X 

g 

  per A = per(I + B) = per BJ ; 

1;::: ;n 

 

where BJ is the principal jJj jJj submatrix of B with row and column indices in 

J and where we agree that per B; = 1. Let us consider the Gaussian probability 

measure in C
n
 with density 

n
e

zk2
. By (2.1.1), we have 

Y 

per BJ = E j‘j(z)j
2 

 

j2J 

 

and hence 

  n  

 

Z    

per A = E 1 + j‘j(z)j
2 

= R2n
f
A

(x; y)dxdy; 
 

  =1      

  j
Y 

     

and the proof of Part (1) follows.       

We write         

n 

1 + j‘j(z)j
2 

=e q(z) 

n 

1 + j‘j(z)j
2 

e  ‘j (z)j
2 

; e  zk
2 

Y j
Y 

       

=1     j=1    

   n      

 

q(z) = kzk
2 

Xj      

where j‘j(z)j
2
:    

   =1      

 

By Lemma 2.2 each function (1 + j‘j(z)j
2
)e 

‘
j
(z)j2

 is log-concave on R
2n

 = C
n
 and hence to complete the proof of 

Part (2) it su ces to show that q is a positive semide nite Hermitian form. To this end, we consider the Hermitian 

form 

 

 n 

j‘j(z)j
2
 = 

n 

 

n  

2 

 n        

p(z) = 

   
l
jk

z
k = 

    
l
jk1

l
jk2

z
k1 

 

j=1 j=1 k=1 j=1 1 k1;k2 

 
z
k2 

      

 

n 

 X  X X  

 

 X  
X 
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X 
= c

k1k2
z
k1

z
k2

; 

 

1 k1;k2  n 

 

where 

n  
X
j  

for  1   k1; k2    n: 
c
k1k2

=l
jk1

l
jk2 

=1   

 

Hence for the matrix C = (ck1k2 ) of p, we have C = L L. We note that B = LL and that the eigenvalues 

of B lie between 0 and 1. Therefore, the eigenvalues of L L lie between 0 and 1 (in the generic case, when L is 

invertible, the matrices LL and L L are similar). Consequently, the eigenvalues of C lie between 0 and 

 

1 and hence the Hermitian form q(z) with matrix I C is positive semide nite, 

which completes the proof of Part (2). 
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